Canonical Transformations, Entropy and Quantization

نویسنده

  • B. Bruhn
چکیده

This paper considers various aspects of the canonical coordinate transformations in a complex phase space. The main result is given by two theorems which describe two special families of mappings between integrable Hamiltonian systems. The generating function of these transformations is determined by the entropy and a second arbitrary function which we take to be the energy function. For simple integrable systems an algebraic treatment based on the group properties of the canonical transformations is given to calculate the eigenvalue spectrum of the energy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canonical Transformations and Gauge Fixing in the Triplectic Quantization

We show that the generators of canonical transformations in the triplectic manifold must satisfy constraints that have no parallel in the usual field antifield quantization. A general form for these transformations is presented. Then we consider gauge fixing by means of canonical transformations in this Sp(2) covariant scheme, finding a relation between generators and gauge fixing functions. Th...

متن کامل

Entropy of infinite systems and transformations

The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of information systems. This entropy works perfectly for probability measure preserving (p.m.p.) transformations. However, it is not useful when there is no finite invariant measure. There are certain successful extensions of the notion of entropy to infinite measure spaces, or transformations with ...

متن کامل

On the Universality of the Entropy - Area Relation

We present an argument that, for a large class of possible dynamics , a canonical quantization of gravity will satisfy the Bekenstein-Hawking entropy-area relation. This result holds for temperatures low compared to the Planck temperature and for boundaries with areas large compared to Planck area. We also relate our description, in terms of a grand canonical ensemble, to previous geometric ent...

متن کامل

Canonical Quantization and the Statistical Entropy of the Schwarzschild Black Hole

The canonical quantization of a Schwarzschild black hole yields a picture of the black hole that is shown to be equivalent to a collection of oscillators whose density of levels is commensurate with that of the statistical bootstrap model. Energy eigenstates of definite parity exhibit the Bekenstein mass spectrum, M ∼ √ NMp, where N ∈ N. From the microcanonical ensemble, we derive the statistic...

متن کامل

Entropy and the Canonical Height

The height of an algebraic number in the sense of Diophantine geometry is a measure of arithmetic complexity. There is a well-known relationship between the entropy of automorphisms of solenoids and classical heights. We consider an elliptic analogue of this relationship, which involves two novel features. Firstly, the introduction of a notion of entropy for sequences of transformations. Second...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013